Law-invariant risk measures: extension properties and qualitative robustness
Accéder
Auteur(s)
Koch-Medina, Pablo
Accéder
Texte intégral indisponibleTexte intégral indisponibleTexte intégral indisponibleDescrizione
We characterize when a convex risk measure associated to a law-invariant acceptance set in L$^∞$ can be extended to L$^p$, 1≤p<∞, preserving finiteness and continuity. This problem is strongly connected to the statistical robustness of the corresponding risk measures. Special attention is paid to concrete examples including risk measures based on expected utility, max-correlation risk measures, and distortion risk measures.
Institution partenaire
Langue
English
Data
2014
Le portail de l'information économique suisse
© 2016 Infonet Economy