Law-invariant risk measures: extension properties and qualitative robustness

Accéder

Auteur(s)

Koch-Medina, Pablo

Accéder

Texte intégral indisponibleTexte intégral indisponibleTexte intégral indisponible

Description

We characterize when a convex risk measure associated to a law-invariant acceptance set in L$^∞$ can be extended to L$^p$, 1≤p<∞, preserving finiteness and continuity. This problem is strongly connected to the statistical robustness of the corresponding risk measures. Special attention is paid to concrete examples including risk measures based on expected utility, max-correlation risk measures, and distortion risk measures.

Langue

English

Date

2014

Le portail de l'information économique suisse

© 2016 Infonet Economy