Analyzing effective connectivity with fMRI
Accéder
Auteur(s)
Accéder
Texte intégral indisponibleTexte intégral indisponibleTexte intégral indisponibleDescription
Functional neuroimaging techniques are used widely in cognitive neuroscience to investigate aspects of functional specialization and functional integration in the human brain. Functional integration can be characterized in two ways, functional connectivity and effective connectivity. While functional connectivity describes statistical dependencies between data, effective connectivity rests on a mechanistic model of the causal effects that generated the data. This review addresses the conceptual and methodological basis of established techniques for characterizing effective connectivity using functional magnetic resonance imaging (fMRI) data. In particular, we focus on dynamic causal modeling (DCM) of fMRI data and emphasize the importance of model selection procedures and nonlinear mechanisms for context-dependent changes in connection strengths.
Institution partenaire
Langue
Date
Le portail de l'information économique suisse
© 2016 Infonet Economy