Analyzing effective connectivity with fMRI

Accéder

Auteur(s)

Stephan, K E

Accéder

Texte intégral indisponibleTexte intégral indisponibleTexte intégral indisponible

Description

Functional neuroimaging techniques are used widely in cognitive neuroscience to investigate aspects of functional specialization and functional integration in the human brain. Functional integration can be characterized in two ways, functional connectivity and effective connectivity. While functional connectivity describes statistical dependencies between data, effective connectivity rests on a mechanistic model of the causal effects that generated the data. This review addresses the conceptual and methodological basis of established techniques for characterizing effective connectivity using functional magnetic resonance imaging (fMRI) data. In particular, we focus on dynamic causal modeling (DCM) of fMRI data and emphasize the importance of model selection procedures and nonlinear mechanisms for context-dependent changes in connection strengths.

Langue

English

Date

2010

Le portail de l'information économique suisse

© 2016 Infonet Economy