External circumstances and internal bodily states often change and require organisms to flexibly adapt valuation processes to select the optimal action in a given context. Here, we investigate the neurobiology of context-dependent valuation in 22 human subjects using functional magnetic resonance imaging. Subjects made binary choices between visual stimuli with three attributes (shape, color, and pattern) that were associated with monetary values. Context changes required subjects to deviate from the default shape valuation and to integrate a second attribute to comply with the goal to maximize rewards. Critically, this binary choice task did not involve any conflict between opposing monetary, temporal, or social preferences. We tested the hypothesis that interactions between regions of dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC) implicated in self-control choices would also underlie the more general function of context-dependent valuation. Consistent with this idea, we found that the degree to which stimulus attributes were reflected in vmPFC activity varied as a function of context. In addition, activity in dlPFC increased when context changes required a reweighting of stimulus attribute values. Moreover, the strength of the functional connectivity between dlPFC and vmPFC was associated with the degree of context-specific attribute valuation in vmPFC at the time of choice. Our findings suggest that functional interactions between dlPFC and vmPFC are a key aspect of context-dependent valuation and that the role of this network during choices that require self-control to adjudicate between competing outcome preferences is a specific application of this more general neural mechanism.
Systemic manipulations have shown that dopamine and serotonin systems are involved in risky decision making. However, how they work within the regions that implement risky choices remains unclear. The present study investigated the role of dopamine and serotonin in the rat anterior insular cortex (AIC) and orbitofrontal cortex (OFC), which make different contributions to risky decision making. We examined the effects of local injection of the D1 (SCH23390), D2 (eticlopride), 5-HT1A (WAY100635) and 5-HT2A (M100907) receptor antagonists into the AIC or OFC on risk preference in a gambling task. We found that different dopamine and serotonin receptor subtypes in the AIC and OFC differentially influence risky decision making: intra-AIC injection of D2R or 5-HT1AR blockers increased risk preference whereas intra-OFC injection of the 5-HT1AR blocker decreased it. Risk preference was not altered by intra-AIC injection of D1R and 5-HT2AR blockers or by intra-OFC injection of D1R, D2R, and 5-HT2AR blockers. Furthermore, additional analyses revealed that dopamine and serotonin signaling in the AIC have outcome history-dependent effects on risk taking: intra-AIC injection of the D2R blocker increased risk preference particularly after winning in a previous risky choice, whereas intra-AIC injection of the 5-HT1AR blocker increased risk preference after losing.
The Hotelling game of pure location allows interpretations in spatial competition, political theory, and strategic forecasting. In this paper, the doubly symmetric mixed-strategy equilibrium for n≥4 firms is characterized as the solution of a well-behaved boundary value problem. The analysis suggests that, in contrast to the cases n=3 and n→∞, the equilibrium for a finite number of n≥4 firms tends to overrepresent locations at the periphery of its support interval. Moreover, in the class of examples considered, an increase in the number of firms universally leads to a wider range of location choices and to a more dispersed distribution of individual locations.