Lipschitz and Hölder stability of optimization problems and generalized equations
Accéder
Auteur(s)
Gfrerer, Helmut
Accéder
Texte intégral indisponibleTexte intégral indisponibleTexte intégral indisponibleDescrizione
This paper studies stability aspects of solutions of parametric mathematical programs and generalized equations, respectively, with disjunctive constraints. We present sufficient conditions that, under some constraint qualifications ensuring metric subregularity of the constraint mapping, continuity results of upper Lipschitz and upper Hölder type, respectively, hold. Furthermore, we apply the above results to parametric mathematical programs with equilibrium constraints and demonstrate, how some classical results for the nonlinear programming problem can be recovered and even improved by our theory.
Institution partenaire
Langue
English
Data
2016
Le portail de l'information économique suisse
© 2016 Infonet Economy