Mining local connectivity patterns in fMRI data
Accéder
Auteur(s)
Accéder
Texte intégral indisponibleTexte intégral indisponibleDescription
A core task in the analysis of functional magnetic resonance imaging (fMRI) data is to detect groups of voxels that exhibit synchronous activity while the subject is performing a certain task. Synchronous activity is typically interpreted as functional connectivity between brain regions. We compare classical approaches like statistical parametric mapping (SPM) and some new approaches that are loosely based on frequent pattern mining principles, but restricted to the local neighborhood of a voxel. In particular, we examine how a soft notion of activity (rather than a binary one) can be modeled and exploited in the analysis process. In addition, we explore a fault-tolerant notion of synchronous activity of groups of voxels in both the binary and the soft/fuzzy activity setting. We apply the methods to fMRI data from a visual stimulus experiment to demonstrate their usefulness.
Institution partenaire
Langue
Date
Le portail de l'information économique suisse
© 2016 Infonet Economy