Higher-order infinitesimal robustness
Auteur(s)
Accéder
Description
Using the von Mises expansion, we study the higher-order infinitesimal robustness of a general M-functional and characterize its second-order properties. We show that second-order robustness is equivalent to the boundedness of both the estimator's estimating function and its derivative with respect to the parameter. It implies, at the same time, (i) variance-robustness and (ii) robustness of higher-order saddlepoint approximations to the estimator's finite sam- ple density. The proposed construction of second-order robust M-estimators is fairly general and potentially useful in a variety of relevant settings. Besides the theoretical contributions, we discuss the main computational issues and provide an algorithm for the implementation of second-order robust M-estimators. Finally, we illustrate our theory by Monte Carlo simulation and in a real-data estimation of the maximal losses of Nikkei 225 index returns. Our findings indicate that second-order robust estimators can improve on other widely-applied robust esti- mators, in terms of efficiency and robustness, for moderate to small sample sizes and in the presence of deviations from ideal parametric models.
Institution partenaire
Langue
Date
Le portail de l'information économique suisse
© 2016 Infonet Economy