From convergence principles to stability and optimality conditions

Accéder

Auteur(s)

Klatte, Diethard

Accéder

Texte intégral indisponibleTexte intégral indisponible

Description

We show in a rather general setting that Hoelder and Lipschitz stability properties ofsolutions to variational problems can be characterized by convergence of more or less abstract iteration schemes. Depending on the principle of convergence, new and intrinsic stability conditions can be derived. Our most abstract models are (multi-) functions on complete metric spaces. The relevance of this approach is illustrated by deriving bothclassical and new results on existence and optimality conditions, stability of feasible and solution sets and convergence behavior ofsolution procedures.

Langue

English

Date

2012

Le portail de l'information économique suisse

© 2016 Infonet Economy