Best-response dynamics in a birth-death model of evolution in games

Accéder

Auteur(s)

Alós-Ferrer, Carlos

Accéder

Texte intégral indisponibleTexte intégral indisponible

Description

We consider a model of evolution with mutations as in Kandori et al (1993) [Kandori,M., Mailath, G.J., Rob, R., 1993. Learning, mutation, and long run equilibria in
games. Econometrica 61, 29-56], where agents follow best-response decision rules as in Sandholm (1998) [Sandholm, W., 1998. Simple and clever decision rules for a model of evolution. Economics Letters 61, 165-170]. Contrary to those papers, our model gives rise to a birth-death process, which allows explicit computation of the long-run probabilities of equilibria for given values of the mutation rate and the population size. We use this fact to provide a direct proof of the stochastic stability of riskdominant equilibria as the mutation rate tends to zero, and illustrate the outcomes of the dynamics for positive mutation rates.

Langue

English

Date

2010

Le portail de l'information économique suisse

© 2016 Infonet Economy