giovedì 23 marzo 2017 ore 11.00 entrata dell'edificio principale (campus di Lugano) Il vincitore o la vincitrice, selezionato/a da una commissione secondo criteri di merito, riceverà la borsa di studio annuale di CHF 4'000.- alla presenza del Presidente dell'Harley-Davidson Club Ticino e del Segretario ...
Cattedra Borromini 2016/2017 Con l istituzione della Cattedra Borromini, un insegnamento annuale di alto livello nel campo degli studi umanistici assegnata a cadenza biennale, l Università della Svizzera italiana, l Accademia di architettura e il suo Istituto di storia e teoria dell arte ...
Innerhalb der Kontrakttheorie hat sich im vergangenen Jahrzehnt die Theorie unvollständiger Verträge als besonders fruchtbar erwiesen. Jüngste Forschungsarbeiten zeigen jedoch, daß die durch Hart und Moore (1988) als gegeben geglaubte Fundierung nicht sehr robust ist. Ziel des Artikels ist es, einen Einblick in aktuelle Fragen und Ergebnisse der diesbezüglichen Forschung zu ermöglichen.
When the price of an input factor to a production process increases, then the optimal output level declines and the input is substituted by other factors. Marshall's rule is a formula that determines the own-price elasticity for one factor as a weighted sum of the elasticities of output market demand and factor substitution. This note offers a proof for Marshall's rule that is significantly shorter and somewhat more intuitive than existing derivations.
We prove that any strictly competitive perfect-information two-person game with n outcomes is solvable in n−1 steps of elimination of weakly dominated strategies— regardless of the length of the game tree. The given bound is shown to be tight using a variant of Rosenthal's centipede game.
The paper scrutinizes various stylized facts related to the minmax theorem for chess. We first point out that, in contrast to the prevalent understanding, chess is actually an infinite game, so that backward induction does not apply in the strict sense. Second, we recall the original
argument for the minmax theorem of chess – which is forward rather than backward looking. Then it is shown that, alternatively, the minmax theorem for the infinite version of chess can be reduced to the minmax theorem of the usually employed finite version. The paper concludes with a comment on Zermelo’s (1913) non-repetition theorem.