Skewed Distributions in Finance and Actuarial Science: A Review

Auteur(s)

Chris Adcock

Accéder

Beschreibung

That the returns on financial assets and insurance claims are not well described by the multivariate normal distribution is generally acknowledged in the literature. This paper presents a review of the use of the skew-normal distribution and its extensions in finance and actuarial science, highlighting known results as well as potential directions for future research. When skewness and kurtosis are present in asset returns, the skew-normal and skew-Student distributions are natural candidates in both theoretical and empirical work. Their parameterization is parsimonious and they are mathematically tractable. In finance, the distributions are interpretable in terms of the efficient markets hypothesis. Furthermore, they lead to theoretical results that are useful for portfolio selection and asset pricing. In actuarial science, the presence of skewness and kurtosis in insurance claims data is the main motivation for using the skew-normal distribution and its extensions. The skew-normal has been used in studies on risk measurement and capital allocation, which are two important research fields in actuarial science. Empirical studies consider the skew-normal distribution because of its flexibility, interpretability, and tractability. This paper comprises four main sections: an overview of skew-normal distributions; a review of skewness in finance, including asset pricing, portfolio selection, time series modeling, and a review of its applications in insurance, in which the use of alternative distribution functions is widespread. The final section summarizes some of the challenges associated with the use of skew-elliptical distributions and points out some directions for future research.

Langue

English

Datum

2015

Le portail de l'information économique suisse

© 2016 Infonet Economy